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ABSTRACT /)7
r

A survey of the literature pertaining to free vibrations
of thin elastic shells is presented with particular atten-
tion to shells of different geometries. The abundant
literature onthevibration of circular cylindrical shells
is reviewed only to the extent that it sheds light on the
general shell vibration problem. Only limited infor-
mation concerning other shell configurations exists in
the published literature. OQf these the spherical shell
and the truncated conical shell have received by far the
most attention, however, evenfor these shells complete
correlations between the analytic results and experi-
mental data has yet to be made. For these and other
shell geometries there is a dire need to develop new
approximate techniques which enable one to solve prac-
tical problems with acceptable accuracy.



INTRODUCTION

The vibrations of thin elastic shells have attracted theoretical
interest among réseai‘chers in the field of mechanics and of acoustics
for almost a century. The emergence of the aircraft industry and
more recently, of missile and space program, added new impetus to
the research efforts on this subject because of its increased practical
importance. However, owing to the intrinsic complication of the prob-
lem, the analytic, as well as experimental results accumulated in the
technical literature, are far from adequate to present a clear picture
of the vibration problem even for the simplest shell configurations.
The main difficulty lies not in the formulation of a set of equations
describing the vibrations of the shell, but rather in the simplification
and solution of these equations. In the existing literature, solutions
with some generality of even the approximate bending theory developed
by Love [l] x, (often referred to as Love's first approximation) are
extremely rare.

To find escape from the nearly unsurmountable mathematical
difficulties, various approximate theories are introduced to solve cer-
tain classes of shell vibration problems. The well known theory of

inextensional vibrations of shells was first proposed by Lord Rayleigh

Sk

Numbers in brackets refer to references cited at the end of this paper.



[2] in 1881. He assumed by physical reasoning that, for the funda-
mental modes, the middle surface of a vibrating shell remains un-
stretched. The displacement functions of the middle surface can be
determined with this condition, and the fundamental frequencies are
then found from the potential and kinetic energy corresponding to
these displacements.

Another type of shell vibration is the extensional vibration
(also after Rayleigh), in which the deformation is maiply extensional.
Since the flexural rigidity of a thin shell against lateral bending is always
much smaller than its resistance to stretching in the middle surface,
the presence of any appreciable degree of middle surface stretching will
be accompanied by large membrane stresses, and consequently, will
render the bending stresses relatively unimportant. For this type of
vibration mode, the membrane theory naturally offers itself as an
approximate approach.

From the point of view of the strain energy that is periodically
stored into the shell wall during vibration, the two approximate ap-
proaches mentioned above are evidently on the opposite extremes. In
the theory of inextensional vibrations, the strain energy is assumed to
be associated with bending stresses only. and no membrane stresses
exist since the displacements are determined by the inextension con-
dition. Qn the other hand, when membrane theory is used to study the

extensional vibrations of a thin shell, the strain energy is assumed to



be solely associated with membrane stresses and that associated
with bending is neglected. These two approximations do not con-
tradict each other as they seem to at first sight; instead, they are
complementary for the purpose of determination of various vibra-
tion modes. It is well known that, in the linear vibrations of beams
or of thin plates, the lateral (or flexural) vibrations are independent
of the longitudinal vibrations; in other words, the equations of motion
in lateral and longitudinal directions are uncoupled and can be treated

separately. In the vibrations of shells, of course, we do not have

uncoupled equations of motion. However, detailed studies indicate

that the vibration modes of a shell can be generally classified into dis-
tinct groups (see, for example, Refs. [8] ) [2.3] ) [26] ) [29] )

[30] ) One of the groups is dominantly transverse vibration modes
in which the strain energy associated with bending predominates, while
another group is dominantly extensional vibration modes in which the
strain energy is mainly due to stretching. It is because of this property
of the shell vibration spectrum that the two classical approaches receive
continual attention.

Aside from the two general approximate theories, there are
some other approaches proposed for certain specific shell configura-
tions. Notably, the Donnell equations for circular cylindrical shells and
the Reissner equations for shallow shells are examples. In these types

of theories, the governing differential equations are simplified by



neglecting some unimportant terms based on geometric arguments or
on an order-of-magnitude analysis. Conseéiuently, the accuracy of their
results depends largely on how well these basic assumptions are satis-
fied. The merit of these theories lies not only in that they yield re-
markably accurate solutions under favorable conditions, but also in that
they often throw light on the solutions of more elaborate theories.

It should be pointed out here that, in this review, the torsional
vibration of shells of revolution have been intentionally left out of
consideration. Early in 1882, Lame had found that the torsional vibra-
tions of a spherical shell are uncoupled from other vibration modes [3]
In 1888, Love further proved that the axisymmetric torsional vibra-
tions of a shell of revolution are independent from extensional vibra-
tion modes [4] . A more general proof was recently given by Garnet,
Goldberg and Salerno [5] that the torsional vibration modes are un-
coupled from both bending and extensional modes in shells of revolution.

In the following, a brief review of the numerous technical papers
on vibrations of shells is presented. Although most papers fall in one
of the three categories of approximate approaches mentioned above,
there are a few recent papers that give complete solutions for the more

exact bending theory for cylindrical and spherical shells.



VIBRATIONS OF CIRCULAR CYLINDRICAL SHELLS

Since the problem of vibrations of a circular cylindrical shell
has received so much attention because of its practical importance and,
perhaps more significantly, of its relative simplicity in analysis, it
seems necessary to include in this survey only a brief chronological
review of the most important results on this subject. The earliest
study on the vibrations of cylindrical shells was made by Lord Rayleigh

[2] and also treated by Love [1] - Rayleigh's inextentional theory
gives two sets of vibration modes. The first set consists of two-
dimensional modes (axial displacement W = 0), with the frequency

equation

b = E#? n®cn*-1)%
n 12pa-prat  nE+l ’
where p,  is the angular frequency, N the circumferential wave
number, a the radius of the middle surface, and other notations com-
monly used in this field. The second set of modes is three-dimensional

with the frequencies given by

p2_ E4° ne(rP-1)? 1+ 60-Y)ac/n* L%
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where 2 2 is the length of the cylindrical shell. It has been pointed out
by Love that the inextensional displacements fail to satisfy the equations

of motion and the boundary conditions and, therefore, corrections are



needed for better results. The correction to the displacement required
to satisfy the boundary conditions appears to be the more important one.
However, the extensional strain which is necessary in order to secure
satisfaction of the boundary conditions is practically confined to a very
narrow region near the boundary. Furthermore, its effect in altering
the total amount of the potential energy, and therefore the frequencies,
is small in thin cylindrical shells.

The extensional vibrations of cylindrical shells have also been
investigated fully by Rayleigh and in many other classical studies. In
the case of symmetrical vibrations, the displacement takes place in

planes through the axis, and the frequency equation is found to be

4 E / n? 7’ Entw®
P _/’ZP(:—Vz)(a‘ * 22 )"' )'“(/—uz);zﬁz =0 .

1f the length g is large compared with the radius a, the two types of
vibrations are: (1} almost purely radial with
P —= E
P (-v3)at,
and (2) almost purely longitudinal, with
PZ et _r’_fi_
1PLT -
These results are only approximate because the bending stiffness is
neglected. Baron and Bleich [12] developed a method to correct and

modify Rayleigh's extensional theory by the following steps. First, the



natural frequencies and their corresponding mode shapes are calculated
by Rayleigh's membrane theory. Then. using these mode shapes and
the strain expressicns cf Fliigge [6] , they computed the maximum
potential energy of bending. Finally, the corrected frequencies are
obtained by employing Rayleigh's principle with the combined maximum
membrane and bending energy. This procedure gives good results for
lower modes and thinner shells.

Studies on the vibrations of thin cylindrical shells based on
the more accurate bending theories have been made by Love., Fligge,
Arnold and Warburton, ar‘lld others. Love [4] worked directly with the
equations of motion of his first approximation theory which leads to an
asymmetric frequency determinant. Neglecting transverse normal
stress and rotatory inertia, Flugge [6] derived a set of equations for
freely-supported cylindrical shells, which include bending and trans-
verse shear effects. Hisl. thecry leads to a symmetrical frequency
determinant which yields three natural frequencies for any particular
nodal pattern, each being associated with a unique arrangement of
the ratio of the displacement in the three orthogonal directions.

In their papers cf 1948 and 1951, Arnold and Warburton [8] ,

[9] ,» presented an extensive investigation of the vibrations ¢f cylin-
drical shells with freely supported ends. By using Timcshenko's strain
expressions and assuming displacements similar to those assumed by

Fliugge, Arnold and Warburton employed Lagrange equaticns to set up



their frequency equation. The results showed excellent agreement with
their experimental data for the range of parameters tested. An interesting
result revealed by their study is that the strain energy, being plotted
against the number of circumferential nocdes. has a minimum at cer-

tain specific number of circumferential nodes. This explains the fact that
the lowest frequency does not in general associate with the simplest nodal
pattern.

Many later efforts have been made at an attempt to improve
the shell equations by expanding the various quantities in the three-dimen-
sional equations of elasticity intc power series of thé thickness, and
retaining second order terms. Kennard [10] derived a set of differen-
tial equations for cylindrical shells by this procedure. Several authors
have used Kennard equations to study the axisymmetric or asymmetric
motions of a cylindrical shell. Kennard's theory has been criticized
by Naghdi [1 l] and others on the ground of inconsistency and the fact
that it leads to an unsymmetric frequency determinant and thereby does
not satisfy the conservation of energy.

Many other works have been directed toward a shell theory
which includes the rotatory inertia and transverse-shear effects. These
considerations, which are important in vibrations of thicker shells and
for the higher order modes, enlarge the range of applicability of the
bending fheory, Mirsky and Herrmann [1 3] formulgted a theory which

includes the rotatory inertia and shear. but neglects the transverse



normal stress effects. In a later paper [14] the transverse normal
stress is also considered for axially symmetric cases. Their theory
contains two shear constants (one associated with shear deformation
in circumferential direction, the other with that in axial direction} which
are determined by solving the transverse shear vibration problems in
corresponding directions. Yu [15] derived a set of Donnell type
equations in displacement components in which the rotatory inertia and
transverse shear effects are also considered. Yu's theory gives an
uncoupled eighth order equation in radial displacement and results in
a cubic frequency equation. Cooper and Naghdi [16], also developed
shell equations which include rotatory inertia and transverse shear
stress effects. They start with Reissner's variational methed and derive
two sets of equations referred to as system I and system II, in which
the latter is a simplified ;’;Lnd approximate form, not including the effects
of transverse shear and rotatory inertia. Greenspon [17] developed
a theory for vibrations of thick-walled cylindrical shells, including all
effects of transverse shear stresses, rotatory inertia, and transverse
normal stresses. He includes a critical comparison between the various
approximate theories and their range of applicability.

It should also be mentioned that many other papers have been
published concerned with the vibration of cylindrical shells in different
acoustic media or in different initial stress conditions. Fung, Sechler

and Kaplan [_18] studied the breathing vibrations of cylindrical shells
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under internal pressure. ‘ They found that the fundamental frequency
increases rapidly with increasing pressure, and that the number of
circumferential waves of the fundamental mode decreases when in-
ternal pressure increases. Nachbar [19] uses Donnell's equations
to study the free vibrations of cylindrical shells with axial prestress.
The vibrations of cylincirical shells under an initial static torque was
investigated by Koval and Cranch [20] . Their experimental results
show that the axial nodal lines tend to bend into helixes. QOther papers
treating various specific vibration problems of cylindrical shells are

too many to mention here.
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VIBRATIONS OF SHALLOW SHELLS AND
SPHERICAL SHELLS
The inextensional vibrations of a thin spherical shell, closed
at one pole and cpen at the cther. were also first studied by Rayleigh
[2:] and treated briefly by Love in Reference [l] - The resulting
frequency equation is much more complicated in form than that for
cylindrical shells. In the case of a nearly complete sphere, the

frequencies are given approximately by

2 AP su mP(n?-1)
Pn"’ a4 3}0 (’/‘[—O()z 1

where [, is the angular frequency, M the Lame constant, (X the
opening angle which is nearly T for a small opening. It is seen

that the frequency tends to infinity as & - o0 . This fact indicates
that the inextensional theory does not apply to nearly complete spheres.
The inextensional theory has received less attention in recent years
evidently because its basic assumption restricts the solution from
satisfying various boundary conditions which have significant effects

on dynamic characteristics cf an open spherical shell.

The extensional vibrations of a complete spherical shell have
been investigated by Lamb [3] in 1883. Neglecting the bending stiff-
ness, he found that the displacement in extensional modes can be
expressed in terms of spherical harmonics of a single integral degree.

An essential characteristic of this theory (alsc of any membrane theory)
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is that the frequencies of all modes are independent of the thickness.
Baker [30] made an extensive study on the frequencies and natural
modes of the axisymmetric extensional vibrations of a spherical shell.
It is found that the frequency spectrum consists of two infinite sets:
(1) the lower branch, in which all frequencies are confined in a nar-
row band, (2} the upper branch, in which frequencies have no upper
limit. In a recent paper Kalnins [32] shows that the first set is a
degenerated case of the bending modes when thickness tends to zero.
Therefore, only the second set is acceptable as a part of the entire
spectrum.

The first general dynamic theory of thin shells, including both
flexural and extensional deformations, was given by Love [4] in 1888,
but few attempts have been made to solve vibration problems of shells
in a long period following Love's work. It was not until 1937 that
Federhofer [34] derived three coupled equations of motion for spherical
shells in displacement components, but only an approximate solution
was obtained for axisy'mmetric vibrations of clamped shallow spherical
caps. DBased on Marguerre's equations, Reissner [21] reduced the
governing equations to two coupled equations intransverse displacement
and a stress function by neglecting longitudinal inertia terms. Using
the simplified theory, Reissner [22] s and Johnson and Reissner [23]

[24] solved the problem of transverse vibrations of shallow spherical
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shells with various boundary conditions. The equations and solutions
reduce to those of flat plates when the curvature on the fundamental fre-
quency became significant even when the rise of the shell was only of the
order of the thickness. Reissner’s theory also indicated that, in the
lateral vibrations of shallow shells, the strain energy due to stretching
was as important as that due to bending. A more general study on the
dynamic problem of shallow shells is advanced by Naghdi [28] which
contains the effects of longitudinal inertia and is exact within the scope of
bending theory of shallow shells. Kalnins and Naghdi [25} , and Kal-
nins [26] employed this general theory in their studies of free vibra-
tions of a shallow spherical shell. It was found that the errors intro-
duced by neglecting longitudinal inertia terms was very small (a few
percent} if the parameters are within the admissible range of shallow
shells. In a later paper, Kalnins [27] derived a set of three uncoupled
differential equations for shallow spherical shells, including the effects
of rotatory inertia. The frequency equation involves a five by five
determinant with its elements expressed by Be_zssel functions. No nu-
merical results were presented owing to the difficulty of solving this
frequency equation. However, it was concluded in Kalnin's paper that,
at high frequencies (in the neighborhood and above the frequency of the
first thickness-shear mode), the bending theory ceased to predict

natural frequencies with accuracy because the effects of thickness-shear
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and rotatory inertia come into play. Furthermore, in addition tc the
transverse modes and longitudinal modes, there exists a third set
of vibration modes, the thickness-shear modes.

In surmnmary, the vibraticns of shallow shells can be treated
in three stages: (1) for frequencies of the order of magnitude w =
( E/f’ ‘}1/2 h/ aZ, the vibration is predominantly transverse, and
Reissner's theoryL[Zl] applies, (2) for frequencies of the order of
magnitude w = (E/f’ )1/‘?'/ay the longitudinal inertia must be considered
and Naghdi’s equations [28] must be employed, (3} when the fre-
quencies are of the order of magnitude w = (E/F )1/2 /h, then the
secondary effects of transverse-shear and rotatory ipertia are no
more negligible, and Kalnins' modified equations should be used. It
appears that the improvement in accuracy and generality is accomplished
by great sacrifice of mathematical simplicity and readiness to yield
numerical results.

Based on Naghdi's general theory with longitudinal inertia
neglected. Archer [29] investigated the influence of uniform initial
stress states on the frequencies of transverse vibrations of shallow
spherical shells. When the initial stress is a compressive one the
frequency decreases as the compressive stress gets larger, until the

buckling state is reached with zero frequency.
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The first successful effort in solving free-vibration probleras
of nonshallow spherical shells was made by Naghdi and Kalnins [31]
Based on Love's bending theory, they derived two coupled differential
equations for torsionless axisymmetric motion in normal displacement
and a stress function. The solution is expressed in terms of Legendre
functions of the firgt and,second kind, but the frequency equation can not
be solved in explicit form owing to its transcendental character. Nu-
merical analysis shows that, for axisymmetric vibrations, the mem-
brane theory gives an acceptable fundamental frequency only for very
small thickness. in the asymmetric case the calculation of frequencies,
according to bending theory, requires in principle the evaluation of
a four-by-four determinant containing associated Legendre functions
of complex degrees and their derivatives, No attempts are made to
obtain numerical results because of the fact that, except for the Legendre
polynomials, the available tabulation of Legendre functions is incom-
plete and limited. In a later paper, Kalnins [32] made an extensive
analysis of the effects of bending on axisymmetric vibrations of non-
shallow spherical shells closed at one pole and open at the other with
various conditions. The results show that the frequency spectrum con-
sists of two infinite sets of modes, which are coupled and interspersed.
According to the ratio of bending-strain-energy to total strain energy,
Kalnins designated one set the bending modes and the other set mem-

brane modes. Though the thickness shear and rotatory inertia are
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neglected, the computation for natural frequencies is lengthy and involved.
In a recent paper., Prasad [33] advanced an analysis for vibrations of
spherical shells that incorporates the effects of thickness shear and
rotatory inertia besides the coupling of extensional and transverse vibra-
tions. By a suitable choice of auxiliary variables, the governing dif-
ferential equations are reduced to three; two are uncoupled partial dif-
ferential equations and the remaining one is partially coupled. The
choice of the auxiliary variables is similar to those used by Kalnins
for shallow spherical shells [27] » The solutions are also expressed
in associated Legepdre functions and no numerical results are available.
As a consequence of the works due to Naghdi, Kalnins and
Prasad, some general remarks can be made concerning vibrations
of nonshallow spherical shells. The membrane theory and inextensional
theory are valuable in predicting part of the frequency spectrum,
though the extensional and lateral vibrations are always coupled. The
coupling effects are especially important for the lower frequencies in
the set of bending modes. The longitudinal inertia terms are in general
not negligible in the vibrations of nonshallow shells with nonzero Gaus-
sian curvature. Furthermore, the general spectrum of vibrations of
a thin spherical shell, including thickness-shear and rotatory inertia
effects, can be classified into five distinct infinite sets: (l} extensional

modes which depend least on thickness, (2) transverse modes;, (3) thickness



shear modes, coming into prominence at higher frequencies,
(4) rotational in-plane motions, and (5) rotational surface motion

in shear.

17
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VIBRATIONS OF CONICAL SHELLS

Although the circular conical shell has probably the simplest
geometry besides the circular cylindrical shell and th.e spherical shell,
its analysis involves much greater mathematical difﬁéulty. An impor-
tant reason is that the governing differential equations of conical shells
have variable coefficients because of the change in curvature from
point to point. Most work dealing with conical shells,y therefore, has
to rely on the Rayleigh-Ritz method or numerical integration.

The inextensional deformation of a conical shell closed at the
apex has been proven impossible. Also, all thin shell theories cease
to be valid near the apex because of the violation of the basic assumption
that the thickness is small compared with the minimum radius of cur-
vature. Therefore, all works concerning conical sheils apply to
truncated conical shells only. Some early studies on axisymmetric
inextensional vibrations of conical shells, clamped at one end and free at
the other, can be found in German technical literature (see Ref. [36] )
and the results are reported to check poorly with expe"erimental data.
Saunders and Pasley [37] made an investigation on a particular engineering
problem by applying Rayleigh's inextensional theory. They calculated
the natural frequencies of a truncated conical shell with a spherical

shell segment connected to the minor end of the cone. Numerical results

and experimental data were provided and good agreement was observed.
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In a later paper. Saunders, Wisniewski. and Paslay [38] employed
the Rayleigh-Ritz method to investigate a more general case. By
assuming the displacement components and using a strain energy
expression including both bending and stretching energy, they cal-
culated the natural frequencies of the asymmetric vibrations of a
conical shell clamped at the minor end, hinged or free on the other
edge. Their numerical results showed also that the inextensional
theory does not give satisfactory solution, especially for low cir-
cumferential wave numbers.

Federhofer [35] made a general study of vibrations of
conical shells with arbitrary conicity., Assuming the displacement
components to be polynomial functions of the coordinate along the
generator, he determined the frequencies by a Rayleigh-Ritz pro-
cedure. Though good approximation to the natural frequencies of
frustums of wide vertex angle may be obtained, Federhofer's poly-
nomial assumption cannot be expected to yield accurated results for
frustrums of small vertex angles. Grigalyuk [36] made an analysis
of freely-supported conical shells by an energy approach. By assuming
displacement components to be trigonomitric functions in the axial
direction, he obtained the equations of motion by Lagrange’s equation,
and solved the resulting frequency equation numericélly. Some nu-

merical values of the frequencies were tabulated for a closed conical
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shell. A somewhat similar assumpticn and procedure has been employed
by Herrmann and Mirsky [39] to analyze the vibration of slightly conical
shells with freely supported ends. Numerical results show thét,, for
short shells, the ccnicity lowers the frequency, while for long shells,
the frequency increases appreciably with conicity. It was also found
that the conicity has strongest influence on frequency when the number
of circumferential waves is three. Seide [40] used an energy expres -
sion of his Donnell type theory for conical shells to investigate the
problem. The longitudinal inertia terms are neglected, and two types
of boundary conditions are considered, namely. ‘simple support with
and without circumferential restraint. The frequency equation contains
an infinite determinant which is solved numerically by obtaining the
roots of truncated determinants.

Goldberg, Bogdanoff and Marcus [41] used_the approach of
numerical integration to calculate the frequencies and mode shapes
of axisymmetric vibrations of a truncated conical shell. They con-
verted the governing equations into a system of six first-order differen-
tial equations which were convenient to be integrated numerically. The
determination of the natural frequencies was essentially achieved by
trial and error. The nonvanishing value of the coefficient determinant
served to indicate the error of the trial value of frequency. In a more
recent paper, Goldberg. Bogdanoff and Alspaugh [42] extended this

technique to the case of asymmetric vibrations of conical shells. In this
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case, the numerical integration has to be carried out for an eighth
order system of twelve equations. Since little physical insight could
be revealed by a limited number of weakly-related numerical solu-
tions, the method developed by Goldberg, et. al., seems to be
valuable primarily in solving some particular enginegering problems
rather than in probing the entire frequency spectrum of the conical
shell with arbitrary conicity and other parameters.

Besides the theoretical efforts mentioned above) attention
should be paid to a recent experimental study on vibrations of conical
shells made by Watkin and Clary [43] . In their paper it was re-
ported that conical frustums, with free-free end conditions, dis-
played interesting trends in that at high resonant frequencies, a greater
number of circumferential nodes occur at the major end than at the
minor end. This indicates thatthere are possible natural modes with
nodal lines neither along the generator nor along the parallel circle.
Similar experimental results were observed by Hoppmann, et.al., in
asymmetric vibrations of shallow shells [44] and nonshallow para-
boloidal shells of revolution [45] ; namely, that nodal lines of asym-
metric modes are not along the lines of principle curvature. It seems

that analytic explanation of this phenomenon is extremely difficult.
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VIBRATIONS OF SHELLS OF OTHER GEOMETRY

Besides the.three types of shells discussed above, there are
many other shell configurations which are of practical interest, such
as, cylindrical shells with noncircular cross section, 'ellipsoidal shells,
paraboloidal shells, complete or incomplete toroidal shells and non-
shallow curved panels, etc. It is not surprising that the problem of
vibrations of these shells has remained almost untouched as one re-
calls the analytic difficulties in the treatment of their static problems,
even approximately.

In a recent, paper, Hwang [48] derived a membrane theory
for axisymmetric extensional vibrations of shells of revolution. From
the two coupled equations of motion in displacement components, he
eliminated the transverse displacement and obtained a second order
differential equation in meridional displacement with variable coefficients.
Numerical results were included for an ellipsoidal shell of revolution
and for a hemispherical shell. It was found that the frequency spectrum
consists of two sets, the lower sequence and the upper sequence, similar
to what Baker [30] obtained in 1961 for spherical shells. From the
previous discussion of axisymmetric extensional vibrations of spherical
shells, it can be concluded that the first set is a degenerated case of
the bending modes which cannot be treated satisfactorily by membrane

theory unless the thickness is extremely small. In the last section of



23

his paper, Hwang included a discussion of the edge effect solution to
account for the effects of bending and transverse shear' stresses near
the boundary. A similar approach has been employed by DeSilva and
Tersteeg [46] in treating the same prcblem except that the longitudinal
inertia is neglected. From the results of Kalnins' paper [32] s it
appears that the bending effects are important for the bending modes
(the lower branch in membrane theory), while the longitudinal inertia
is important for the membrane modes (the upper branch in membrane
theory). Therefore, the simultaneous neglect of bending effects and
longitudinal inertia seems to limit the application of their theory. In
the second part of their paper, DeSilva and Tersteeg also developed a
boundary layer theory by assuming that the transverse displacement
component predominates.

Shiraishi and DiMaggio [47] used a purturbation approach to
analyze the extensional axisymmetric vibrations of prolate spheroidal
shells., The thickness of the shell is not uniform since the inner and
outer surfaces are formed by rotating confocal ellipses with respect to
their minor axis. The solutions are obtained in power series of the
eccentricity which have the solution fora spherical shell as their first
term, and converge rapidly for small eccentricities.

Hoppmann, Cohen and Kunukkasseril [_45] have made an attempt

to use Love's bending theory in their investigation of axisymmetric
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vibrations of paraboloidal shells of revolution, but no solutions are
obtained because of the complexity of the equations. However, ex-
perimental results are reported for frequencies and nodal patterns
of axisymmetric and asymmetric vibraticns of twe mcdels cof para-

boloidal shells of revolution.
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SUMMARY

As pointed out earlier, the analysis of shell vibrations is
extremely complex and involved. The difficulties in obtaining analy-
tic solutions to dynamic shell equations are eminent. To solve the
governing partial differential equations one has to confront the fol-
lowing mathematical tasks: to make a judicious choice of possible
auxiliary variables which might uncouple the equations, to select
a proper form for the eigen functions which might reduce some equa-
tions to ordinary differential equations, and finally, to perform an
inordinate amount of computer work if the solutions are not expressible
in the highly limited tabulated functions.

To date, most investigations have been concerned with a few
types of shells of revolution with very simple geometry, even for
which the solutions in asymmetric cases are still unsatisfactory to
account for all experimental observed phenomena. Further analytic
investigations will inevitably involve sophisticated, mathematical
ingenuityy(e. g, Refs. [27] ; [31] and [33] }» Therefore, from an
engineer’s view point, there is a dire need to develop new approximate
techniques which enable one to solve more pra.ctical problems with
acceptable accuracy. It seems that the following two approaches deserve

more attention and systematic development.



1. The boundary layer theory. (e.g., Ref.. [46] [481 }

In most practically important vibration modes of open shells
(or composite shells) the strains in a narrow‘region along the edge
(or connection seam} are more complicated than those in the internal
part of the shell. A separate treatment of the boundary lay-rer can con-
siderably simplify the analysis. The internal part can usually be re-
garded as a region of purely inextensional vibration or of purely ex-
tensional vibration. The boundary conditions which are not satisfied
by the simplified solutions may be satisfied with the help of additional
boundary layer solutions.

2. Purturbation theory. (e.g., Ref. [47] ). When the shell

configuration deviates only slightly from a simpler one whose solution
is available, the various quantities or terms of the governing dif-
ferential equations can be expanded into power series of some small
parameters specifying the deviation, and then the differential equations
can be simplified by neglecting high order terms in such parameters,
and solutions can be obtained in power series of the same. This ap-~
proach may be proven invaluable for, such as, cylindrical shells with
an elliptic cross section which has a small eccentricity, or for slightly
bend circular cylindrical shells, etc.

In concluding this review, it is felt that for most practical

26

important problems remaining so far unsolved or poorly solved, parallel
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works should be carried out in theoretical and experimental investigations.
Their mutual guidance and feedback type corrections may eventually
bring forth a better understanding of the dynamic characteristics of thin

shells.
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